Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3194, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609365

ABSTRACT

Many annelids can regenerate missing body parts or reproduce asexually, generating all cell types in adult stages. However, the putative adult stem cell populations involved in these processes, and the diversity of cell types generated by them, are still unknown. To address this, we recover 75,218 single cell transcriptomes of the highly regenerative and asexually-reproducing annelid Pristina leidyi. Our results uncover a rich cell type diversity including annelid specific types as well as novel types. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such as vasa, piwi and nanos homologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. We find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors, in piwi+ cells. Finally, lineage reconstruction analyses reveal computational differentiation trajectories from piwi+ cells to diverse adult types. Our data reveal the cell type diversity of adult annelids by single cell transcriptomics and suggest that a piwi+ cell population with a pluripotent stem cell signature is associated with adult cell type differentiation.


Subject(s)
Adult Stem Cells , Oligochaeta , Pluripotent Stem Cells , Animals , Cell Differentiation/genetics , Transcription Factors/genetics
2.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328233

ABSTRACT

Regeneration, regrowing lost and injured body parts, is an ability that generally declines with age or developmental transitions (i.e. metamorphosis, sexual maturation) in many organisms. Regeneration is also energetically a costly process, and trade-offs occur between regeneration and other costly processes such as somatic growth, or sexual reproduction. Here we investigate the interplay of regeneration, reproduction, and age in the segmented worm Platynereis dumerilii. P. dumerilii can regenerate its whole posterior body axis, along with its reproductive cells, thereby having to carry out the two costly processes (somatic and germ cell regeneration) after injury. We specifically examine how age affects the success of germ cell regeneration and sexual maturation in developmentally young versus old organisms. We hypothesized that developmentally younger individuals (i.e. lower investment state, with gametes in early mitotic stages) will have higher regeneration success and reach sexual maturation faster than the individuals at developmentally older stages (i.e. higher investment state, with gametes in the process of maturation). Surprisingly, older amputated worms grew faster and matured earlier than younger amputees, even though they had to regenerate more segments and recuperate the more costly germ cells which were already starting to undergo gametogenesis. To analyze germ cell regeneration across stages, we used Hybridization Chain Reaction for the germline marker vasa. We found that regenerated worms start repopulating new segments with germ cell clusters as early as 14 days post amputation. In addition, vasa expression is observed in a wide region of newly-regenerated segments, which appears different from expression patterns during normal growth or regeneration in worms before gonial cluster expansion. Future studies will focus on determining the exact sources of gonial clusters in regeneration.

3.
bioRxiv ; 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37163014

ABSTRACT

Annelids are a broadly distributed, highly diverse, economically and environmentally important group of animals. Most species can regenerate missing body parts, and many are able to reproduce asexually. Therefore, many annelids can generate all adult cell types in adult stages. However, the putative adult stem cell populations involved in these processes, as well as the diversity of adult cell types generated by them, are still unknown. Here, we recover 75,218 single cell transcriptomes of Pristina leidyi, a highly regenerative and asexually-reproducing freshwater annelid. We characterise all major annelid adult cell types, and validate many of our observations by HCR in situ hybridisation. Our results uncover complex patterns of regionally expressed genes in the annelid gut, as well as neuronal, muscle and epidermal specific genes. We also characterise annelid-specific cell types such as the chaetal sacs and globin+ cells, and novel cell types of enigmatic affinity, including a vigilin+ cell type, a lumbrokinase+ cell type, and a diverse set of metabolic cells. Moreover, we characterise transcription factors and gene networks that are expressed specifically in these populations. Finally, we uncover a broadly abundant cluster of putative stem cells with a pluripotent signature. This population expresses well-known stem cell markers such as vasa, piwi and nanos homologues, but also shows heterogeneous expression of differentiated cell markers and their transcription factors. In these piwi+ cells, we also find conserved expression of pluripotency regulators, including multiple chromatin remodelling and epigenetic factors. Finally, lineage reconstruction analyses reveal the existence of differentiation trajectories from piwi+ cells to diverse adult types. Our data reveal the cell type diversity of adult annelids for the first time and serve as a resource for studying annelid cell types and their evolution. On the other hand, our characterisation of a piwi+ cell population with a pluripotent stem cell signature will serve as a platform for the study of annelid stem cells and their role in regeneration.

4.
J Exp Zool B Mol Dev Evol ; 338(4): 225-240, 2022 06.
Article in English | MEDLINE | ID: mdl-34793615

ABSTRACT

Development of sexual characters and generation of gametes are tightly coupled with growth. Platynereis dumerilii is a marine annelid that has been used to study germline development and gametogenesis. P. dumerilii has germ cell clusters found across the body in the juvenile worms, and the clusters eventually form the gametes. Like other segmented worms, P. dumerilii grows by adding new segments at its posterior end. The number of segments reflect the growth state of the worms and therefore is a useful and measurable growth state metric to study the growth-reproduction crosstalk. To understand how growth correlates with progression of gametogenesis, we investigated germline development across several developmental stages. We discovered a distinct transition period when worms increase the number of germline clusters at a particular segment number threshold. Additionally, we found that keeping worms short in segment number, by manipulating environmental conditions or via amputations, supported a segment number threshold requirement for germline development. Finally, we asked if these clusters in P. dumerilii play a role in regeneration (as similar free-roaming cells are observed in Hydra and planarian regeneration) and found that the clusters were not required for regeneration in P. dumerilii, suggesting a strictly germline nature. Overall, these molecular analyses suggest a previously unidentified developmental transition dependent on the growth state of juvenile P. dumerilii leading to substantially increased germline expansion.


Subject(s)
Annelida , Polychaeta , Animals , Germ Cells , Polychaeta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...